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Abstract

A visual attention system should respond placidly when comstimuli are pre-
sented, while at the same time keep alert to anomalous viguas. In this paper,
a dynamic visual attention model based on the rarity of festis proposed. We
introduce the Incremental Coding Length (ICL) to measueeghbrspective en-
tropy gain of each feature. The objective of our model is taimé&e the entropy
of the sampled visual features. In order to optimize eneysamption, the
limit amount of energy of the system is re-distributed anstirfgatures accord-
ing to their Incremental Coding Length. By selecting featuwith large coding
length increments, the computational system can achi¢eatmn selectivity in
both static and dynamic scenes. We demonstrate that thegedpnodel achieves
superior accuracy in comparison to mainstream approaatstatic saliency map
generation. Moreover, we also show that our model captenessal less-reported
dynamic visual search behaviors, such as attentional sandgnhibition of re-
turn.

1 Introduction

Visual attention plays an important role in the human visyatem. This voluntary mechanism
allows us to allocate our sensory and computational resgui@ the most valuable information
embedded in the vast amount of incoming visual data. In tls¢ ¢iecade, we have witnessed the
success of a number of computational models on visual &te(gee [6] for a review). Many of
these models analyze static images, and output “salien@g’mahich indicate the probability of
eye fixations. Models such as [3] and [4] have tremendoushstaal the correlation between eye
fixation data and saliency maps.

However, during the actual continuous perception prodegsrtant dynamic behaviors such as the
sequential order of attended targets, shifts of attentijoeatcades, and the inhibitory mechanism
that precludes us from looking at previously observed targee not thoroughly discussed in the
research on visual attention. Rather than contributingpéoatccuracy of saliency map generation,
we instead consider alternative approaches to understandhattention: is there a model that
characterizes the ebbs and flows of visual attention?

Up to the present, this question is not comprehensively areshvby existing models. Algorithms
simulating saccades in some attention systems [23, 7] argrte for engineering expediency rather
than scientific investigation. These algorithms are netrided to cover the full spectrum of dynamic
properties of attention, nor to provide a convincing exptéon of the continuous nature of attention
behaviors.
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In this paper, we present a novel attention model that igsitrally continuous. Unlike space-based
models who take discrete frames of images as the elementasy our framework is based on con-

tinuous sampling of features. Inspired by the principle r&fdictive coding [9], we use the concept
of energy to explain saliency, feature response interesitgt,the appropriation of computational re-
sources in one unified framework. The appropriation of enerdpased on the Incremental Coding
Length, which indicates the rarity of a feature. As a resiituli that correlate to rarely activated

features will receive the highest energy, and become safémce the proposed model is temporally
continuous, we can demonstrate a series of simulationsrardic attention, and provide plausible
explanations of previously unexamined behaviors.

1.1 Spaceand FeatureBased Attention

Many of the bottom-up visual attention models follow the Ka@nd Ullman framework [10]. By
analyzing feature maps that topographically encode thgéasfreomogeneity of features, an algo-
rithm can detect the local irregularities of the visual inpthis paradigm explains the generation of
attention from a one-shot observation of an image. Howeeseral critical issues may be raised
when this framework is applied to continuous observatieng.(video). First, space-based atten-
tion itself cannot interpret ego-motion. Additional comrate transformation models are required
to translate spatial cues between two different frameso®Edhere are attention mechanisms that
operate after the generation of saliency, such as atterltioodulation [19], and Inhibition of Return
(IOR) [8]. The initial space-based framework is not liketygrovide a convincing explanation to
these mechanisms.

In addition to saliency based on local irregularity, rederestigations in V4 and MT cortical ar-
eas demonstrate that attention can also be elicited bycpkatifeatures [13, 18]. In the field of
computational models, explorations that are biased bufeatare also used in task-dependent spa-
tial saliency analysis [16]. The emerging evidence in festiriven attention has encouraged us to
propose a pure feature-based attention model in parallielthe space-based feature map paradigm.

1.2 Onthe Cause of Attention

Finding “irregular patterns” as a criterion for attentisnwidely used in computational models. In a
more rigid form, saliency can be defined by the residuals &EBince of Gaussian filter banks [7],
regions with maximal self-information [3], or most disciimant center-surround composition [4].
However, all of these principles do little to address theseanf saliency mechanisms in the brain.

At the level of computation, we cannot attribute the formatf attention to functional advantages
such as foraging for foods [6]. In this paper, we hypothe#izg¢ visual attention is driven by the
predictive coding principle, that is, the optimization oétabolic energy consumption in the brain.
In our framework, the behavior of attention is explained asmsequence of an actively-searching
observer who seeks a more economical neural code to repteeesurrounding visual environment.

2 TheTheory

Motivated by the sparse coding strategy [15] discoveredrimgry visual cortex, we represent
an image patch as a linear combination of sparse coding hasitions, which are referred as
features. The activity ratio of a feature is its average asp to image patches over time and
space. The activity of the feature ensemble is consideredmsbability function. We evaluate
each feature with respect to itscremental Coding Length (ICL). The ICL of i*" feature is defined
as the ensemble’s entropy gain during the activity increnoéri’” feature. In accordance with
the general principle of predictive coding [17], we redisite energy to features according to their
ICL contribution: frequently activated features receigsd energy than rarer features. Finally, the
saliency of a region is obtained by summing up the activitglbfeatures at that region.

2.1 Sparse Feature Representation

Experimental studies [15] have shown that the receptivedief simple-cells in the primary visual
cortex produce a sparse representation. With standarcoiefB], we learn a set of basis functions
that yields a sparse representation of natural image patchiese basis functions are used as



features in the analysis of attention. Specifically, we 1&#00 8 x 8 RGB image patches from
natural scenes for training. A set®fx 8 x 3 = 192 basis functions is obtained. (See Fig. 1).

Let A be the sparse basis, whereis thei'” basis function. LeW = A~! be the bank of filter
functions, wheréW = [wy,wa,...,Wigo] . Each row vectow; of W can be considered as a
linear filter to the image patch.

The sparse representatioaf an image patch is its response to all filter functions. G&e&ectorized
imagex, we haves = Wx. Since each basis function represents a structural pvemith the
cortex representation of natural images, only a small @i of neurons are activated at one
time. Considering the energy consumed by neural activitiiérbrain, this sparse coding strategy is
advantageous [11].
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Figure 1: First30 components of the basis functioAsand the corresponding filter functioWw
are shown in this figure.

2.2 Thelncremental Coding Length

In contrast to the long-term evolution of sparse represemtawhich reflects the general statistics
of nature, short-term habituations, such as potentiatfosypaptic strengths, occur during brief
observations in a particular environment. In order to eadithe immediate energy changes in
the cortex, some previous work has analyzed the informaBpnesentation and coding in early
visual system [20, 21, 1]. Guided by the insights behind jotee coding [17], we propose the

Incremental Coding Length (ICL) as a computational priteipased on features. This principle
aims to optimize the immediate energy distribution in thetesn in order to achieve an energy-
economic representation of its environment.

The activity ratiop; for i*" feature is defined as its relative response level over a segue sam-
pling. Given the sample matriX = [x!,x2,...,x* ...], wherex” is an vectorized image patch,
we can compute the activity ratjg as:
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Furthermore, we denotg = [p;,p2,...]" as the probability function of feature activities. Note
that the activity ratio and the energy are abstract valuatsréflect the statistics of features. Wiring
this structure at the neuronal level goes beyond the scoffesgbaper. However, studies [13] have
suggested evidence of a population of neurons that is cajpélglenerating a representation for in-
termodal features. In our implementation, the distribujioaddresses the computational properties
of this putative center.

1)

Since the visual information is jointly encoded by all feas) the most efficient coding strategy
shouldmake equal use of all possible feature response levels. To achieve this optimality, the model
needs to maximize the entrog¥(p). Sincep is determined by the sampl&§, it is possible for a
system to actively bias the sampling process in favor of maing information transmission.

At a certain point of time, the activity ratio distributiosip. We consider a new excitation to feature
1, which will add a variatior to p;, and change the whole distribution. The new distribufias:
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Figure 2: The framework of feature-based selective attanti

This variation therefore changes the entropy of featurigiies. The change of entropy with respect
to the feature activity probability increment is:
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where:
9 Ej;éi pjlogp;

= H(p) — 1+ p; +p;ilogpi,
O (p) — 1 +pi +pilogp

Accordingly, we define the Incremental Coding Length (IGhpe:

OH
ICL(p:) = 3;)) = —H(p) — pi — logp; — pilogp; (2

2.3 Energy Redistribution

We define thesalient feature set S as:S = {i | ICL(p;) > 0}. The partition{S, S} tells us whether
successive observations of featdreould increaseff (p). In the context of visual attention, the
intuition behind the salient feature set is straightfordvak feature is salienvnly when succeeding
activations of that feature can offer entropy gain to the system.

Within this general framework of feature-level optimizatj we can redistribute the energy among
features. The amount of energy received by each featurenisteéd;. Non-salient features are
automatically neglected by settidg = 0 (k € S). For features in the salient feature set, let:

ICL (p:)

=Y (ifieS). (3)
> ICL(p))
jeS
Finally, given an imageX = [x!,x2,...,x"], we can quantify the saliency mapl =
[mj,my,...,m,]as:
€S

In EQ. 4, we notice that the saliency of a patch is not constiaig determined by the distribution
of p, which can be obtained by sampling the environment overespad time.

According to Eq. 4, we notice that the saliency of a patch may wver time and space. An
intuitive explanation to this property is the contextudluence: under different circumstances,
“salient features” are defined in different manners to regné the statistical characteristics of the
immediate environment.



3 The Experiment

We proposed a framework that explains dynamic visual attergts a process that spends limited
available energy preferentially on rarely-seen featuheshis section, we examine experimentally
the behavior of our attention model.

3.1 Static Saliency Map Generation

By sequentially sampling over all possible image patchescalculate the feature distribution of
a static image and generate the corresponding saliency Tase maps are then compared with
records of eye fixations of human subjects. The accuracy afgorithm is judged by the area under
its ROC curve.

We use the fixation data collected by Bruce et al. [3] as theteark for comparison. This data
set contains the eye fixation records fr@msubjects for the full set 0of20 images. The images

are down-sampled to an appropriate scalex 64, % of the original size). The results for several
models are indicated below. Due to a difference in the samgpensity used in drawing the ROC
curve, the listed performance is slightly different (ab®1@03) from that given in [3] and [4]. The

algorithms, however, are all evaluated using the same leadhand their relative performance
should be unaffected. Even though it is not designed foicstatiency map generation, our model
achieves the best performance among mainstream approaches

Table 1: Performances on static image saliency

Itti et al. [7] Bruce et al. [3] Gao et al. [4] Our model
0.7271 0.7697 0.7729 0.7928
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Figure 3: Some examples of our experimental images.

3.2 Dynamic Saliency on Videos

A distinctive property of our model is that it is updated oeli As proposed in Eq. 2, ICL is
defined by the feature activity ratio distribution. Thistdizution can be defined over space (when
sampling within one 2-D image) as well as over time (when damgver a sequence of images).
The temporal correlation among frames can be considered aslacian distribution. Accordingly,
at thet*" frame, the cumulative activity ratio distributigst yields:

t—1

1 T—1
t AT
p—zgexp( —) b7, (5)

where ) is the half life. p, is the feature distribution of the'" image. Z = [ p‘(z)dz is the
normalization factor that ensurp$ is a probability distribution.

In video saliency analysis, one of the potential challerggeses from simultaneous movements of
the targets and self-movements of the observer. Since odelsfeature-based, spatial movements
of an object or changing perspectives will not dramaticaffgct the generation of saliency maps. In
order to evaluate the detection accuracy of our approacéruithnging environment, we compare
the dynamic visual attention model with models proposedjrapd [5].

In this experiment, we use a similar criterion to that ddsemiin [5]. The efficacy of the saliency
maps to a videoclip is determined by comparing the respartsasities at saccadic locations and
random locations. Ideally, an effective saliency algantivould have high output at locations gazed
by observers, and tend not to response in most of the randdrolken locations.



To quantify this tendency of selectivity, we first compute thstribution of saliency value at human
saccadic locationg, and the distribution at random locatiogs Then, KL divergency is used to
measure their dissimilarity. Higher the KL divergency isoma easily a model can discriminate
human saccadic locations in the image.

KL =0.2493 KL =0.3403 KL =0.5432
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A: input sample B: model in [7] C: model in [5] D: our model

Figure 4: The eye-track records and the video is obtained f&. This video contains both target
movements and self-movements. In this video, 137 saccgdisew dots in figure A) are collected.
Given the sequence of generated saliency maps, we can dhagaliency distribution at human
saccade locations (narrow blue bars), and random locatiaide green bars). The KL-divergency
of these two distribution indicates the performance of gaoldel.

3.3 Dynamic Visual Search

We are particularly interested in the dynamic behaviorsttendion. Reported by researchers in
neurobiological experiments, an inhibitory effect wasusmed after sustained attention [12]. This
mechanism is referred as Inhibition of Return (IOR) [8]. &a&gh on the cumulative effects of
attention [24] has suggested that the dynamics of visuatbdsave broad implications for scene
perception, perceptual learning, automaticity, and stesrn memory. In addition, as a mecha-
nism that prevents an autonomous system from being perrtigatinacted to certain salient spots
and thereby to facilitate productive exploration, the catational modeling of IOR is of practical
value in Al and robotics. Previous computational modeldhsag[22, 7] implemented the IOR in
a spatially-organized, top-down manner, whereas our meataples the environment online and is
driven by data in a bottom-up manner. Spontaneous shiftt@ftion to new visual cues, as well
as the “refusal of perception” behavior arise naturally @ssequences of our active search model.
Moreover, unlike the spatial “inhibitory masking” apprdaia [7], our model is feature-based and
is therefore free from problems caused by spatial coordimahsformations.

3.3.1 Maodeling Sensory Input

The sensory structure of the human retina is not uniform. rElselution of perception decreases
when eccentricity increases. In order to overcome the phi/Emitations of the retina, an overt eye

movement is made so that the desired visual stimuli can beethpnto the foveal region. Similar

to the computational approximations in [14], we consider fivea sampling bias as a weighted
maskW over the reconstructed saliency map. Let the fovea be ldater,, yo); the saliency at

(z,y) is weighted byW (z, y):

W(z,y) = e [(z—20)*+(y—v0)?] T (6)

In the experiments, we chooge-= 1.

3.3.2 Overt Eye Movementstowards Saliency Targetswith Inhibition of Return

In the incremental perception of one static image, our dyoamual system is guided by two fac-
tors. The first factor is the non-homogeneous compositiofeatures in the observed data that
fosters feature preferences in the system. The second factéofoveal structure that allows the
system to bias its sampling via overt eye movements. Thepiatg of these two factors leads to an
active visual search behavior that moves towards a maxirmtragy equilibrium in the feature dis-
tribution. It is also worth noting that these two factorsiagk a hysteresis effect that is responsible
for Inhibition Of Return (IOR). A recently attended visualjion is not likely to regain eye fixation
within short interval because of the foveated weightingisTgroperty of IOR is demonstrated by
our experiments.



An implementation of our dynamic visual search is shown aalgorithm box.

Dynamic Visual Attention

. At timet, calculate feature ICL based g
. Given current eye fixation, generate a saliency map witbdbbias.
. By a saccade, move eye to the global maximum of the saliemaqy

. Sample topV “informative” (largest ICL) features in fixation neighbarbd. (In our ex-
periment,N = 10)

5. Calculatept, updatept*!, and go to Step. 1.

A W DN P

It is also worth noting that, when run on the images providg{3, our dynamic visual attention

algorithm demonstrates especially pronounced saccades mvhltiple salient regions are presented
in the same image. Although we have not yet validated thesmadas against human retinal data,
to our knowledge this sort of “attentional swing” has nevee reported in other computational

systems.
4 26 91 219 279 -
- -

76

98 294 N
2 11 105 137 I

Figure 5: Results on dynamic visual search

4 Discussions

A novel dynamic model of visual attention is described iis frper. We have proposed Incremental
Coding Length as a general principle by which to distributergy in the attention system. In this
principle, the salient visual cues correspond to unexpfeiatures - according to the definition of
ICL, these features may elicit entropy gain in the percepsiate and are therefore assigned high
energy.

To validate this theoretical framework, we have examingueeixnentally various aspects of visual
attention. In experiments comparing with static salieneyps) our model more accurately predicted
saccades than did other mainstream models. Because théupddées its state in an online manner,
we can consider the statistics of a temporal sequence andadgl achieved strong results in video
saliency generation. Finally, when feature-based ICL ismined with foveated sampling, our
model provides a coherent mechanism for dynamic visuatkeaith inhibition of return.

In expectation of further endeavors, we have presentedtlmnving original ideas. 1) In addition
to spatial continuity cues, which are demonstrated in ditexature, saliency can also be measured
using features. 2) By incorporating temporal dynamicssaaiiattention system can capture a broad
range of novel behaviors that have not successfully beelaiega by saliency map analysis. And
3) dynamic attention behaviors might quantitatively belakged and simulated by the pursuit of a
maximum entropy equilibrium in the state of perception.
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