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Abstract. What a human’s eye tells a human’s brain? In this paper,
we analyze the information capacity of visual attention. Our hypothesis
is that the limit of perceptible spatial frequency is related to observing
time. Given more time, one can obtain higher resolution - that is, higher
spatial frequency information, of the presented visual stimuli. We de-
signed an experiment to simulate natural viewing conditions, in which
time dependent characteristics of the attention can be evoked; and we
recorded the temporal responses of 6 subjects. Based on the experiment
results, we propose a person-independent model that characterizes the
behavior of eyes, relating visual spatial resolution with the duration of
attentional concentration time. This model suggests that the information
capacity of visual attention is time-dependent.

1 Introduction

How much information is gained through one glimpse? There have been many
attempts to answer this question[1]. To demonstrate the model in an information
perspective, we consider the human visual perception pathway as an informa-
tion channel. Any visual information whose spatial frequency is higher than the
capacity of one’s perception is unable to be transmitted through this channel.
From this point of view, one can assert that what we “see” is the information
that passes the band-limit filter of the visual channel[2].

1.1 Attention

Treisman and her colleagues in 1977 [3] classified the visual perception process
into two categories, the pre-attentive process, and the attentive process. Gen-
erally speaking, the pre-attentive process is a parallel mechanism with coarse
resolution and simple feature analysis. On the other hand, the attentive process
is a serial process, much slower but with higher resolution. In tasks that require
careful discriminations, our perception capacity is subjected to attention. An
effective description of the behavior of attention is the “Zoom Lens” theory[4].
This theory proposed that the size of attentional focus can be concentrated to
meet the requirement of successful perception. Recent researches even proved a
physiological correlation of the “Zoom Lens” model[5]. In the “zoom lens” model,



only two factors are determinant to the information capacity of attention: the
area that attention covers, and its spatial resolution.

1.2 Information capacity of attention

Previous studies indicated that the information capacity of attention is almost
constant under uni-scaled visual stimuli [6]. However, when objects of different
sizes are contained in one stimuli, the performance of attention varies[7]. To be
specific, for more acute patterns, longer time is required to concentrate one’s
attention. It is easy for us to read several words of the headline of a newspaper
in a short glimpse, but with the same observing time, it is hard even to see one
single letter of the text font, which has a much higher spatial frequency than
the headline. In an empirical level, this inequity in information capacity can be
explained by zooming mechanism: with finer resolution, the observer needs more
time to tune his/her attention.

In this paper, we aim at constructing a general model to quantify the infor-
mation capacity of attention. More specifically, we try to (1) analyze the zooming
mechanism of attention in respect of time and, (2) develop a quantitative formula
that describes the viewing time duration and resolution of attention.

The result of our experiment shows a clear dependency of response time
and spatial resolution of attention. We propose a model that describes response
time of attention under stimuli of different spatial frequencies, and discussed our
model in the context of cognitive science.

The introduction of temporal characteristics of attention enriches our under-
standing of the human vision, and may also advance current quantitative models.
Currently, there is scant reference pertaining to the time-varying performance
of our visual system. With the results of our experiments, it is possible for a
researcher to deduct the frequency of incoming information given observation
time. On the other hand, given the resolution of a stimulus, researchers may
also predict the shortest viewing time that permits reliable perception.

2 The experiment

The goal of the experiment is to record the exact time duration required for
successful attentional perception. In our experiment, we recorded the time du-
ration of a counting task. In a counting task, a subject is told to enumerate the
number of several identical items that are placed parallel to each other. Nor-
mally, the subject has to shift his/her attention continuously and sequentially
like scanning. The serial counting task has a predominant advantage: it has a
clear boundary over time, which opens opportunities for quantitative analysis.
The stimuli on our experiment are strings of identical numeral characters, such
as 0000, or 9999999. The length of each string is randomly chosen from 4 to 8.
Numerals are also chosen in a random, so that the performance of a subject may
not be hampered by particular features of certain numerals.



The spatial frequency is tuned by using different font sizes of the string. To
quantify the response time of smaller stimuli is neither possible in the experiment
nor valuable in applications. Since many researchers have suggested that in a
counting task, the smallest interval should not smaller than 5 arcmin[10], which
corresponds to 5px under the condition of our experiment, the possible sizes of
a character in our experiment are 8px, 10px, 15px, 20px, 30px and 50px. The
font sizes and the viewing distance are deliberately chosen so that there is no
risk of over-pixelization[8], even at the smallest scale of 8px.

2.1 Evoking concentration of attention

The key in the experiment is to evoke the attention to concentrate in each
trial. If the experimental task instead becomes a continuous process without
interrupting, a subject would benefit by utilizing previous attentional status,
and his/her performance would relate only weakly to the scale parameters[6]. In
other words, aiming at quantifying the attention, we have to divert the attention
from the status of being tuned to a particular position or a particular scale. Thus,
we set each string a random appearing position, rather than making them pop
up at the center of the monitor.

In the experiment, we also set an anchor point. An anchor point is located
aside the screen. The subject is told to fix his/her attention on the anchor point
just before and immediately after a counting trial. Naturally, when a new trial
starts, the subject would abandon his/her attention at the anchor point, “zoom-
ing out” to search for the string, and re-concentrate his attention. In addition
to the spatial disparity of the anchor point and stimuli, a difference in depth
also required the subject to shift optical focus plane, thus further shuffles the
subject’s attention.

2.2 Experiment configurations

Subjects and environments: 6 subjects (all of which are college students
with normal or corrected-to-normal vision) were included in the experiment;
each was exposed to approximately 30 min stimuli. 5 of them were näıve to the
purpose of the experiments. Subjects were given the instruction to “count the
number of characters as fast as possible, and, when finished, look at the anchor
point.”

All visual stimuli were displayed on a calibrated 19-inch LCD monitor, with
viewable size 376mm× 301mm, resolution 1280px× 1024px. The distance from
the monitor to the subject is 1m. The anchor point is located at 1.3m away
from the subject, on the left to the screen. When concentrating attention on the
anchor point, a subject moved his/her attention leftwards without turning head,
so that the ocular muscle activities could be recorded by our apparatus.

Data recording: We used the NeuroScan system to collect electro-oculogram
(EOG) at the sampling rate of 100Hz. EOG had been proved effective in track-
ing eye movements [9]. Our system has a temporal resolution high enough to



distinguish whether a subject is looking at the anchor point or looking at the
stimuli. Fig.1 shows the recorded data from 3 of our subjects
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Pieces of horizontal EOG data

Fig. 1. This is a piece of horizontal EOG data. High potential corresponds to the
activation of ocular muscle that makes the eye move rightwards. Although the potential
is vulnerable to electrical activities of other muscles, the steep raises and falls of the
curve are obvious. It is therefore easy to give a qualitative interpretation of the response
time of attention.

3 Data Analysis

Since the viewing angle between the screen and the anchor point is 20◦, shifting
attention between stimuli and the anchor point results remarkable raises and
falls in horizontal EOG signal. The rising edge of a EOG signal corresponds to
the arrival of eyesight from anchor point to the screen, while the falling edge of a
EOG signal corresponds to the departure of eyesight from the screen. Thus the
“counting time” in each trial is the duration of the square wave. In processing,
we tailored the periods overwhelmed by electrical activities of other muscles. At
last, 1462 identifiable trials were included in our data set.

More generally, we prefer to interpret the data in frequency domain. Mea-
sured in c/deg, the frequency f corresponding to a particular font size s is given
by



f = c/deg = 60/s.

The conversion from size domain to frequency domain is shown in Figure 2.

Fig. 2. A comparison of size domain and frequency domain representations

3.1 Two stages of response time

We analyzed the behavior of attention into 2 stages: localizing and counting. The
localizing stage starts from the departure of attention from the anchor point to
the moment when the subject detects the first numeral of the string. Note that
this process is determined by the spatial frequency of the stimuli only, we denote
this function as L(f). The second part of the response time is the “counting”
part. We denote this function as C(f, n) One simplification can be made by
implying C(f, n) as a linear function of n, that is, C(f, n) = n · C(f). This
linearity has been discussed by previous studies[10].

In sum, given frequency f and string length n of a trial, the response time
T (f, n) is

T (f, n) = L(f) + (n− k) · C(f), (1)

in which, n−k denotes the times of jumping from one character to its propinquity.
It is possible for a subject to ”apprehend” the length of a string from its

shape without counting [10]. In that case, the actual numbers of counting may
be less than the length of the string. For example, a subject may started counting
from the third or the fourth numeral, or comprehended the number of last two
or three numerals so the trial is finished in advance. A variable k is designed to
take such “apprehensive counting” into consideration.



3.2 Normalization invariance

Although different people behaved differently in our experiment, the normalized
responses along frequency axes all leaded to an identical shape. If we define the
normalization as N(f, n) = T (f,n)

max(T (fi,n)) , the normalized response time would be:
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Fig. 3. Normalized data of different subjects

It is obvious from Figure 3 that the response time of different spatial fre-
quency stimuli extend in a way that is irrespective to the string length. We call
this property the normalization invariance.

This invariance can be defined as follows

T (fi, ni)
T (fj , ni)

=
T (fi, nj)
T (fj , nj)

. (2)

Substituting T (f, n) into Equation 1, we obtain

L(fi) · C(fj) = L(fj) · C(fi), (3)

or
L(fi)
L(fj)

=
C(fi)
C(fj)

. (4)



3.3 A computational model of attention

We adopt the exponential function to describe L(f) and C(f) as follows

L(f) = c1 · c2
f , (5)

C(f) = c3 · c2
f , (6)

where f is the spatial frequency of the stimuli, c1, c2, c3 are parameters that
distinguish the behavior of a particular person.

L(f) and C(f) satisfy the normalization invariance of Equation 4, since

L(f1) · C(f2) = c1 · c2
f1 · c3 · c2

f2 = c1 · c3 · c2
f1+f2 = L(f2) · C(f1).

In this model, L(f) and C(f) share a common parameter c2. In an empirical
way, we interpret this parameter as a factor that summarizes the personal eye
conditions and observing habits concerning to one subject in different spatial
frequencies.

We define the error function as

e =

∑[
T (f, n)− T̂ (f, n)

]2

Nf,n
, (7)

in which, T (f, n) denotes the actual value of response, T̂ (f, n) denotes the cal-
culated value of our estimation, and Nf,n denotes the number of trials to the
corresponding frequency and character number.

In our experiment, the choice of k is not directly derived from our experi-
mental results. However, since

T (f, n) = c1 · c2
f + (n− k)c3 · c2

f = (c1 − kc3) · c2
f + nc3 · c2

f ,

the values of c2 and c3 are independent to k. This fact legitimates us to propose
an arbitrary k, and discuss c2 and c3 safely. Previous studies indicated that a
subject could not enumerate more than 4 objects simultaneously in a counting
task [10]. Accordingly, an acceptable choice of k in our framework is 4.

We plotted the response curve of each subject, and compare our prediction
with actual records. From the figures shown below, we can see that the expo-
nential function represents the characteristics of the responses of the subjects.

3.4 Speculations on the concentration process

We may interpret that c1 and c3 as the condition parameter of attentional con-
centration. Before the stimulus was detected, the attention had been concen-
trated at the anchor point. Once the subject detected the popped up string,



Table 1. parameters of different data sets

Data set c1 c2 c3 e

Subject 1 76.76 1.0691 31.87 841.6
Subject 2 61.16 1.0987 32.30 1311.8
Subject 3 157.12 1.0362 25.68 1006.6
Subject 4 118.94 1.0533 25.83 1986.3
Subject 5 219.76 1.0334 38.86 841.6
Subject 6 39.49 1.1552 32.09 1794.9

All 112.09 1.0633 33.57 4627.6

Fig. 4. Fitting experimental results with the model



he/she had to move his/her sight through a relatively long distance from the an-
chor point to the stimulus. In this process, the concentrated attention may not
be maintained due to the rapid movement of eyes. In the stage of localization, the
attention would thus be re-initialized from a totally diffused status to the desired
scale. We denote such process of attentional concentration as S(∞) → S(f), in
which S(∞) describes the status of the worst condition of attentional concentra-
tion, S(f) describes the degree of concentration after which the counting stage
starts.

In the second stage of counting, a subject did not need to shuffle his attention
because the eye moved with much smaller increments, and the concentrated
attention, in some degree, may remained and might be reused in the counting
of its neighboring numeral. Similarly, we denote this process as: R(f ′) → R(f).

4 Discussions

4.1 Of human vision

Inspired by Shannon’s Theory, many scholars have analyzed human vision from
a perspective of entropy[11]. These researches pioneered a new frontier to inspect
the gap between human and machines. It is true that television programs are
more attractive than a dead wall, but in order to calculate and compare the
amount of information in different patterns, many studies oversimplified human
to a camera. This camera prototype is questionable when we, for example inves-
tigate the human’s attentional responses to grasslands and faces. Both images
have similar amount of information in high frequency, but in general cases, hu-
man eyes are more inclined to attach to the latter. This phenomenon can be
explained by our temporal analysis of attention. Faces are rich in both low and
high frequency information, whereas a piece of well cultivated grasslands has ex-
tremely abundant in high frequency information but very scarce in low frequency
information. According to our theory, the observer’s attention has a very coarse
resolution at a first look, and thus “blind” to the high frequency information of
the grass, such as veins and shapes of the leaves. The low frequency component,
however, catches the eyes and serves like an entrance. With the absence of low
frequency information, one is less likely to initiate a careful observation at a
certain region.

4.2 Of machine vision

As a counterpart to human vision, machine vision in many aspects aims at sim-
ulating the behavior of human. Nevertheless, before calculating in a humanoid
way, we must be sure that the information we provide for an artificial processing
system is identical to what our eyes provide to our brain. If not, it would be
groundless to expect artificial processors to behave like human beings. We do
not believe that a machine vision system should intentionally implement all the
visual defects of human - electronic devices do not need to gazing on patterns



to enhance resolution. However, we should be aware of the complex and simple
tasks for human vision system. In some daily tasks, a human brain may triumph
over artificial devices, but this is not because we have sharper sensors, or faster
processors, but because we have the wisdom to select proper data to process. The
time-dependent capacity of attention can help us find out what kind of informa-
tion is usually perceived by human vision system. Understanding the fact that
with very limited information, a human brain still works in high performance,
we can feed information of less quantity but more quality to an artificial system.
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