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Abstract

For an ill-posed problem like boundary detection, hu-
man labeled datasets play a critical role. Compared with
the active research on finding a better boundary detector to
refresh the performance record, there is surprisingly little
discussion on the boundary detection benchmark itself.

The goal of this paper is to identify the potential pitfall-
s of today’s most popular boundary benchmark, BSDS 300.
In the paper, we first introduce a psychophysical experiment
to show that many of the “weak” boundary labels are un-
reliable and may contaminate the benchmark. Then we an-
alyze the computation of f-measure and point out that the
current benchmarking protocol encourages an algorithm to
bias towards those problematic “weak” boundary labels.
With this evidence, we focus on a new problem of detect-
ing strong boundaries as one alternative. Finally, we assess
the performances of 9 major algorithms on different ways of
utilizing the dataset, suggesting new directions for improve-
ments.

1. Introduction
Boundaries in an image contain cues that are very im-

portant to high level visual tasks such as object recognition
and scene understanding. Detecting boundaries has been a
fundamental problem since the beginning of computer vi-
sion. In the development of boundary detection, datasets
[16, 8, 5, 1] - along with their evaluation criteria1 - have
played critical roles. These datasets are responsible for our
progress in the problem of boundary detection, not only be-
cause they provide an objective quantity to judge the value

1In this paper, we refer to the images and the labels as datasets, while
the term benchmark includes images, labels as well as the corresponding
evaluation criteria.
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Figure 1. An example image and the corresponding labels from B-
SDS 300. Top figure shows the original image overlapping with all
6 boundary maps from labelers. There is a clear difference among
different labelers. Red circle gives an example boundary segment
that is labeled by only one out of 6 labelers (labeler 4). Bound-
ary segment in the orange circle is labeled by two labelers (labeler
3 and 4). The boundary segment in green circle is unanimously
labeled by all 6 labelers.

of each newly proposed algorithm, but also because the im-
ages, the labels, and the evaluation standards they set forth
have heavily influenced the researchers during the develop-
ment of a boundary detection algorithm.
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1.1. Boundary detection is ill-defined

What is a boundary? A universally accepted definition
of a boundary may not exist. No matter how the definition
is made, one can always find counter-examples on which
people disagree. In today’s most popular benchmark BSDS
300 [16], 28 human labelers contributed a total number of
1667 high quality boundary maps on 300 images of natural
scenes (200 training, 100 testing). Within the entire dataset,
it is hard to find a image where different people have per-
fectly matched labels.

In high-level vision tasks such as object recognition or
scene classification, human annotation has been tradition-
ally considered reliable. However, the ill-posed nature of
boundary detection makes this problem a different scenari-
o. There is surprisingly little discussion about ground-truth
data reliability for boundary detection. It is commonly held
that human annotations from BSDS 300 are reliable. Previ-
ously, [16, 17] have the following observations regarding to
the reliability of BSDS 300:

1. Labelers are well trained and correctly instructed. Ex-
amined separately, each boundary seems to be aligned
to some underlying edge structure in the image. The
effect of an adversarial labeler (labelers with totally ir-
relevant output) is minimal.

2. Label variability can be explained by a perceptual or-
ganization hierarchy. Even though different labelers
may annotate boundaries in different levels of detail-
s, they are consistent in a sense that the dense labels
“refine” the corresponding sparse labels without con-
tradicting to them. In other words, the same image
always elicits the same perceptual organization across
different labelers.

Nevertheless, none of these observations are strong e-
nough to legitimatize the BSDS 300 as a benchmark. To
be able to evaluate an algorithm faithfully, the benchmark
has to be free from both type I (false alarm) and type I-
I (miss) statistical errors. Aforementioned observation #1
rules out type I errors. However, the risk of type II remains
unchecked errors in human labels. It is possible that the la-
belers may miss some equally important boundaries. Once
we benchmark an algorithm, the incomplete data may incor-
rectly penalize an algorithm that detects true boundaries.

As for observation #2, the hierarchical organization of
boundaries raises more fundamental questions: Can we give
equal weights to the strong boundaries where everyone a-
grees, and the weak boundaries where only one or two la-
belers have noticed? When we say “boundary detection”,
are we trying to solve one single problem with differen-
t thresholds? Or different problems at different levels of
the perceptual hierarchy?

1.2. The perceptual strength of a boundary

In this paper, the perceptual strength of a boundary seg-
ment refers to the composite effect of all factors that influ-
ence personal decision during boundary annotation. Such
factors may include border contrast, object type, or line
geometry. One simple way to approximate the perceptual
strength of each boundary segment is to take the proportion
of labelers who have labeled that specific segment. To get
rid of local alignment noise, we match each pair of human
boundary maps using the assignment algorithm proposed in
[11], with the same parameter set [15] used for algorithm
evaluation. For instance, given an image with N labelers,
if a boundary pixel from one subject matches with M other
labelers, it has a perceptual strength of M+1

N . The weakest
boundary labels are the ones annotated by only one labeler.
These boundaries are referred to as orphan labels. In BS-
DS 300, 29.40% of the boundary labels are orphan labels.
In comparison, the second largest population (28.99%) are
consensus labels that are labeled by everyone.

Clearly, the orphan labels and the consensus labels are
not equal. In Sec. 3, we use a psychophysical experimen-
t to assess the statistical difference of weak/strong bound-
aries. Our experimental results indicate that weak (espe-
cially orphan) labels are not capable of evaluating today’s
algorithms.

Based on this novel discovery, in Sec. 4 we investigate
the impact of these weak boundaries on the current eval-
uation system. A disappointing yet alarming result is that
all of the 9 algorithms experience significant performance
drops if we test them on strong boundaries only. Further-
more, we pinpoint a mechanism called precision bubble
in the original BSDS 300 benchmarking algorithm. This
mechanism tends to exaggerate the precision of an algo-
rithm, especially when the weak labels are included in the
groundtruth.

We raise an important yet largely neglected question:
are we ready to detect strong boundaries? Our analysis
shows that none of the 9 algorithms is capable of discov-
ering strong boundaries significantly better than random se-
lection. The output values of the algorithms are either inde-
pendent or weakly correlated with the perceptual strength.
This result is in sharp contrast to many of today’s popular
practice of using the output of a boundary detector algorith-
m as an informative feature in high-level boundary analysis.
We conclude our discussion with a comparison of pB v.s.
retrained-pB and BSDS 300 v.s. BSDS 500.

2. Related works

Over the last 12 years, a great number of boundary de-
tection algorithms have been proposed. The benchmark’s F-
measure, according to the measurements proposed in [15],
has increased 7 percent, from 64.82% [15] to 71.43% [20].



In this paper, we focus on 9 major boundary detection algo-
rithms (shown in Tab. 1).

All of these algorithms, except cCut, provide very com-
petitive F-measures at the time when they were first intro-
duced. F-measure, also known as F-score, or the harmonic
mean of precision and recall, is recommended in [15] as
a summary statistics for the precision recall property. Over
the past 10 years, it has been accepted as the most important
score to judge a boundary detector.

Along with boundary detection, a parallel line of work
[25, 27, 12] focuses on the detection of “salient bound-
aries”. These works emphasize on finding salient 1-D struc-
tures from the ensemble of line segments discovered by
a boundary detector. The stated advantage of these algo-
rithms is to gain extra precision scores at low-recall region-
s. Therefore, it is interesting to include cCut [12], one of
the latest algorithms in this line, and evaluate it under our
quantitative framework.

Name F-measure Year
pB [15] 0.65 2002

UCM [2] 0.67 2006
Mincover [9] 0.65 2006

BEL [7] 0.66 2006
gPB [4] 0.70 2008

XRen [19] 0.67 2008
NMX [13] 0.71 2011
cCut [12] 0.45 2011
SCG [20] 0.71 2012

Table 1. The list of boundary detection algorithms referred in this
paper. Their F-measures increase over time.

2.1. Relevant theories on dataset analysis

In contrast to the perennial efforts in breaking bench-
mark performance records, theoretical analysis on bench-
mark reliability is brought to people’s attention only in re-
cent years. These studies can be roughly categorized into ei-
ther human annotation analysis, or benchmark design anal-
ysis. The first problem of human annotation comes with the
recent trends of obtaining annotation data via crowdsourc-
ing [22]. Many seminal models [18, 26] have been proposed
to analyze the crowdsourced annotation process in gener-
al. Specifically, [24] has proposed strategies to estimate the
quality of crowdsourced boundary annotation. On the oth-
er hand, [23] has raised a series of interesting questions to
the design philosophy of today’s object recognition bench-
marks. Their alarming results suggest the potential pitfalls
of some widely adopted benchmarks.

3. A psychophysical experiment
While collecting the human annotation, BSDS 300 [16]

gave the following instructions to each of the labelers:

Divide each image into pieces, where each piece
represents a distinguished thing in the image. It
is important that all of the pieces have approxi-
mately equal importance. The number of things
in each image is up to you. Something between 2
and 20 should be reasonable for any of our im-
ages.

The instruction is intentionally made vague in order to min-
imize potential labeling bias towards any specific sub-type
of boundaries. However, the absence of precise instruction
also leads to a considerable labeling variation. As we have
discussed in Sec. 1, 31.39% of the boundary labels are or-
phan labels. On one hand, we know that these boundaries
are labeled by well-educated Berkeley students chosen from
a graduate level computer vision class. On the other hand,
we also aware that the annotation of these orphan labels is
due to a pure random assignment of labelers. How well can
we trust these relatively weak labels?

In this section, we introduce a two-way forced choice
paradigm to test the reliability of a boundary dataset. In
each trial, a subject2 is asked to compare the relative per-
ceptual strength of two local boundary segments with the
following instruction:

Boundaries divide each image into pieces, where
each piece represents a distinguished thing in the
image. Choose the relatively stronger boundary
segment from the two candidates.

One of the two boundary segments is chosen from the
human label dataset, and the other is a boundary segmen-
t produced by an algorithm. The advantage of this two-
alternative experiment is that it cancels out most of the cog-
nitive fluctuations, such as spatial attention bias, subject fa-
tigue, and decision thresholds that are different among sub-
jects. Moreover, compared to the tedious labeling process,
this paradigm is much simpler and cheaper to implement-
ed via crowdsourcing. In our experiment, the average re-
sponse time for each trial is 5 seconds. One caveat is that
the comparison experiment requires the algorithm generat-
ed candidate segment to have a similar appearance to the
human labels. Among the 9 benched algorithms, BEL is
the only algorithm that does not produce thinned edges, and
therefore is skipped for the experiment.

3.1. Easy and hard experiments for boundary com-
parison

Using different boundary sampling strategies, we can de-
sign two experiments: hard and easy. In the hard experi-
ment, each algorithm is first thresholded at its optimal F-
measure, and then matched to the original human labels to

2We refer to labelers as the people who originally labeled the BSDS300
dataset, while subjects refers to people we recruited to perform our two-
way forced choice experiment.



Orpha labels

Annotated
dataset

Algorithm detected
boundary set

Algorithm
false alarm

A) B) C)

Figure 2. An illustration of the two-way, forced choice experiment (hard mode). A) The experiment interface: In each trial, a subject is
presented with two images. On the left image, two boundary segments (high contrast squares with red lines) are superimposed onto the
original photo. The subject is asked to click on one of two boundary segments that she/he feels stronger. At the same time, the original
image is also presented in a separate window. B) The Venn diagram of sets of boundary segments: The thick circle encompasses the
full human labeled boundary set of the dataset. The subset of orphan labels is shown in the green area. The algorithm detected boundary
set is the dotted ellipsoid. The subset of algorithm false alarms is highlit in red. In each trial, we randomly select one boundary segment
from the green area, and the other one from the red area. C) Orphan labels v.s. algorithm false alarms: Some example images with both
human orphan labels (shown in green lines) and false alarms of PB algorithm (shown in red lines). In many examples, the relative strength
between algorithm false alarm and human orphan labels is very hard to tell.

find false alarms – boundary segments that are considered
weaker than human labels. And then, for each testing im-
age, we randomly draw one instance of algorithm false alar-
m, and compare it against another randomly selected human
orphan label. Fig. 2 gives a detailed illustration of this pro-
cess. This experiment is called “hard experiment” because
the relative order between human labeled orphan label and
algorithm detected false alarms is not easy to determine (as
one can see in Fig. 2.C).

Similarly, we also design an easy experiment. First, we
remove all the human labels that are not unanimously la-
beled by everyone. This leaves us with a very small but
strong subset of labels (perceptual strength equals 1). Then,
with this new dataset, we re-benchmark all 8 algorithms,
determining their optimal F-measures and thresholds (high-
er than their original thresholds), and find each algorithm’s
false alarms under its new optimal threshold. Finally, the
competition is made between strong human labels and con-
fident output of algorithm false alarms.

For each algorithm on either easy/hard experiment, we
produce one trial per image for all 100 test images. 5 sub-
jects participated in the experiment, and a total number of
8000 responses are collected. The final ordering for each
trial is determined by majority voting of all 5 subjects. To
interpret the result, we introduce a term called dataset risk.
This value measures the probability that an algorithm false
alarm wins over a human label. Ideally, a perfectly con-
structed dataset should have zero risk, because it does not
miss any strong boundary segments, and algorithm false
alarms are always weaker than any instance from the per-

fect boundary dataset. However, our experiment results in
Fig. 3 show that the BSDS 300 – especially those orphan
labels, are far away from being perfect.
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Figure 3. Results of our hard and easy experiments. The aver-
age risks over all algorithms are 0.5017 and 0.1082 for hard and
easy experiments, respectively. Dotted red line indicates the 50%
chance performance. The average result of the hard experiment is
even greater than chance level.

3.2. Interpreting the risk of a dataset

From Fig. 3, we observe high risks in the hard experi-
ment for all algorithms that we have tested. The first conclu-
sion one can draw from this observation is rather depress-
ing – the orphan labels are extremely unreliable since they
falsely classify good algorithm detections into false alarms
(or falsely include weak algorithm detections into hits, de-
pending on the thresholds). Yet, we can also interpret the
results of hard experiments in a more optimistic way: the
computer vision algorithms have performed so good that



their results look as good as some of the human’s. In other
words, these algorithms have passed a restricted Turing test
if the dataset risk is equal to or greater than 0.5.

No matter whether to choose the pessimistic or the opti-
mistic perspective, it is clear that the orphan labels are not
appropriate to serve as a benchmark – or even parts of a
benchmark. Instead, we should put more focus on the con-
sensus boundaries because the risk is much lower.

It is worth mentioning that our results on the easy exper-
iment does not necessarily imply that the consensus bound-
aries is a perfect dataset. However, as long as the missed
boundaries of consensus labels cannot be accurately detect-
ed by an algorithm, this data remains to be valid for a bench-
mark. In other words, given the performance of today’s
top algorithms, detecting strong boundaries is a meaning-
ful Turing test that is not yet solved.

4. F-measures and the precision bonus
Given the fact that the orphan labels are unreliable, what

role do those labels play in the benchmarking process? How
much can they affect the result of F-measure? In this sec-
tion, we show that the orphan labels can create a “precision
bonus” during the calculation of the F-measure..

In the original benchmarking protocol of BSDS 300, the
false negative is defined by comparing each human bound-
ary map with the thresholded algorithm map, and count the
unmatched human labels. In comparison, the false posi-
tive is defined by comparing the algorithm map with all
human maps, and then count the algorithm labels that are
not matched by any human. In other words, the cost of
each algorithm missing pixel is proportional to the human
labelers who have detected that boundary, whereas the cost
of each false alarm pixel is just one. This protocol exag-
gerates the importance of the orphan labels in the dataset,
and encourages algorithms to play “safely” by enumerating
an excessive number of boundary candidates. Strategically,
detecting strong boundaries has become a much more risky
endeavor under the current framework of F-measure.

We can better evaluate the impact of such precision
bonus by re-benchmarking the algorithms on different lev-
els. First we threshold the human labels by different percep-
tual strengths, from 0, 0.2, 0.4 . . . to 1. And then use each
of these subset of the human labels as the ground-truth to
benchmark all 9 algorithms. At each perceptual strength, an
algorithm find its optimal threshold that produces the max-
imal F-measure. Fig. 4 plots the precision and recall values
at the optimal algorithm thresholds for all 9 algorithms.

Despite its strong influence on the benchmark scores,
the precision bubble by itself should not be considered as a
“mistake” in the design. What makes today’s benchmarking
practice questionable is the joint cause of the following fact-
s: 1) weak boundaries in BSDS 300 are not reliable enough
to evaluate today’s algorithms; and 2) precision bonus gives
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Figure 4. The optimal precision and recall values for all algorithm-
s, benchmarked under different label strengthes. By increasing the
perceptual strength, we transform the problem from “boundary de-
tection” to “strong boundary detection”. The precision values for
algorithms dropped 28.7% in average. In contrast, the recall val-
ues, which are not affected by the precision bonus, only dropped
9% in average.

extra credits to algorithms working on the low perceptual
strength boundaries – which according to fact 1, is not a
good practice.

5. Detecting strong boundaries
The simplest way to avoid the problem of weak labels

is to benchmark the algorithms using consensus labels on-
ly, as shown in Fig. 5. However, the performances of the
tested algorithms have dropped so significantly that it stim-
ulates us to ask another question: are we detecting strong
boundaries better than random?

To compute the baseline performance of a null hypothe-
sis, we design a control experiment called partial labels. In
this experiment, we crop out a part of each human bound-
ary map to make the total number of pixels in the remaining
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Figure 5. Benchmarking all 9 algorithms using different ground truths. The top figure shows the precision recall curves, with solid dots
indicating the maximal F-measure location. The bottom figure gives an example image and the ground-truth labels: original labels,
consensus labels, and partial labels. The partial label (bottom right figure) of this image is clearly an unrealistic ground-truth because the
majority of the bird boundary is discarded.

map equals to that of a strong boundary map (see Fig. 5).
Because such cropping operation is completely independent
of the image content, it can be considered as a random sub-
sampling from an algorithm perspective.
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Figure 6. Algorithm performances (optimal F-measures) evaluated
under different ground-truths.

With the PR curves shown in Fig. 5, the optimal F-
measures of all three experiments are compared in Fig. 6.
Except for cCut, all other algorithms have suffered severe
performance decreases when shifting from detecting all la-
bels to detecting consensus labels only. Such performance
drop is so devastating that the F-measures are no better
(even worse for pB algorithm) than the control experiment

with randomly contaminated ground-truth.
In this experiment, the salient boundary algorithm cCut

has the most significant performance drop on partial labels.
However, the overall performance of cCut is not comparable
with the state-of-the-arts detectors (such as gPB, NMX, or
SCG), even if we benchmark them on the consensus labels.

The comparative results of consensus and partial labels
contradict our intuitions that algorithm detection strength is
correlated with the perceptual strength of a boundary. It also
questions the practices in computer vision that use bound-
ary detector output as a feature for high-level visual tasks.
For instance, intervene contour [14, 6] is a well-established
method that computes the affinity of two points in the im-
age by integrating the boundary strengths along the path
that connects those two points. Many other works such as
[21, 10, 3] also included pB (or gPB) boundary intensity in
their feature design. To understand the relationship between
algorithm output and the perceptual strength of a boundary,
we further plot the perceptual strength distribution with re-
spect to algorithm detector output for all 9 algorithms. In
Fig. 7, we can see that the correlation between algorith-
m output and perceptual strength of the boundary is rather
weak.

5.1. Retrain on strong boundaries

Another useful test to evaluate our current progress on
strong boundary is to retrain an algorithm. Because of its
great popularity, we focus on pB algorithm for the retraining
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Figure 7. Boundary perceptual strength distribution. This experi-
ment is done with the original (full) labels. In each sub-figure, the
X-axis is the percentage of matched human label strength (always
summing to 1), the Y-axis is the algorithm output value. If we ex-
tract one row with y = k in a sub-figure, the color strips represent
the distribution of the human labels that are matched to all algo-
rithm pixels where detection output is equal to k. Red area rep-
resents human labels with perceptual strength in [0, 0.2), whereas
green represents perceptual strengths in [0.2, 0.4) . . ., and finally
the gray area shows the population of consensus labels. Ideally,
the gray area should have a upper triangular shape (XREN is the
closest) – that is, algorithm output being correlated with human
perceptual strength.
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Figure 8. Retrain pB algorithm using consensus labels, and com-
pare the results on original (all) and consensus (con) boundaries
respectively.

experiment. Using the publicly available MATLAB codes
from the authors’ website, we re-generate the training sam-
ples with consensus boundaries and learn a new set of pa-
rameters. This retrained-pB is then compared against the o-

riginal pB in the original as well as the consensus label test
sets. The retrained-pB does not gain superior F-measure
even if we use consensus labels as the ground-truth.

5.2. BSDS 300 and BSDS 500

Recently, BSDS 300 has been enriched to BSDS 500
with 200 additional testing images. According to [4], the
protocol used to collect new human labels remains the same
as in BSDS 300. According to our analysis, the population
of orphan and consensus labels of these 200 new images are
30.58% and 30.15%, respectively. Not only the statistics of
BSDS 500 looks very similar to the original BSDS 300, the
performance of algorithms on this new dataset is also very
close. Since BSDS 500 is fairly new, not many algorithms
have provided their results on this new dataset. We choose
two most representative algorithms SCG and gPB for our
analysis. The optimal F-measure of these algorithms un-
der all boundaries, or consensus boundaries are reported in
Fig. 9.
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Figure 9. Comparison of SCG and gPB algorithms on BSDS 300
and BSDS 500 datasets. The comparison is also made by either us-
ing original (all) boundaries or consensus (con) boundaries only.
The difference between BSDS 300 and BSDS 500 is small (mean
difference is 0.028) and consistent (STD over all 4 different set-
tings is 0.0058).

6. Discussion
In this paper, we have raised doubts on the current way

of benchmarking an algorithm on the most popular dataset
of boundary detection (Further results are provided in the
supplemental material). With a psychophysical experimen-
t, we show that the weak, especially the orphan labels are
not suitable for benchmarking algorithms. However, if we
shift from the original problem of boundary detection, to the
new problem of strong boundary detection, we are on one
hand blessed with a more reliable dataset; but on the other
hand, disappointed by the experimental results that none of
the current algorithms has shown evidence of good perfor-
mance.

Our results in Fig. 7 do not conclude that the curren-
t algorithms’ output value is a useless feature for high-level
tasks. The validity of using boundary detector output to
reveal high-level semantic information may not have a one-
line answer. It depends critically on the specific scenarios
as well as the design of the high-level vision algorithms. At



present, researchers from different topics have not yet con-
verged to one common framework.
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